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Abstract — A first-order boundary perturbation method based on Muskhelishvilli's complex variable
representations is formulated for the two-dimensional elasticity problem of a nearly-circular
inclusion embedded in an infinite dissimilar material. Universal relations which are independent of
loading conditions are estublished among the solutions for a homogeneous infinite plane. a perfectly-
circular inclusion and a slightly-perturbed non-circular inclusion. It is shown that the solution to a
circular inclusion can be constructed algebraically from that of an infinite homogeneous plane while
the stress distribution along the interface circle leads to the perturbation solutions for a nearly-
circular inclusion. Explicit results are given for inclusions with smooth polygon shapes by con-
sidering cosine wavy perturbations along a reference circle. A similar analysis is carried out for a
bimaterial interfice whose shape deviates slightly from a straight line. Our perturbation results can
be used to study elastically-induced morphological perturbations of surfaces. interfaces, voids.
precipitates and inclusions in a stressed solid. As an example, we demonstrate that, under sufficiently
large stresses, material surtaces become unstable against a range of diffusional perturbations
bounded by two critical wavelengths. Also, as suggested from our perturbation analysis and verified
by a finite clement calculation, even slight surface undulation caused by an unstable morphological
perturbation cian result in substantial stress concentration along the surface, which may cause plastic
deformation or brittle fracture before the bulk stress reaches a eritical level,

INTRODUCTION

One of the important problems in the micromechanics of solid-state deformation concerns
the stress concentration by second-phase inclusions embedded in a dissimilar material.
Donnell (1941) scems to have been the first to study the case of an elliptical inclusion in an
isotropic matrix. It was later proved by Hardiman (1952) in 2D cases and generalized by
Eshelby (1957) to 3D cases that a uniform applicd load at infinity induces a constant state
of stress within an elliptical or ellipsoidal inclusion. In almost half a century there has been
established a vast literature in this arca and many useful solutions can be found in Mura’s
(1987) book. For 2D inclusion problems, the complex variable approach of Muskhelishvilli
(1953) for isotropic analysis and that of Stroh (1958) and Lekhnitskii (1981) for anisotropic
analysis has frequently been used (e.g. Jaswon and Bhargava, 1961 ; Bhargava and Radha-
krishna, 1964 ; Sendeckyj, 1970 ; Berezhnitskii and Denisyuk, 1983 ; Hwu and Ting, 1989).

It is well known that the development of stresses within a solid may lead to mor-
phological changes. Eshelby (1957) has shown that the total strain encrgy of a spherical
inclusion subject to transformation strains may be lowered by changing the inclusion into
less symmetric shapes such as an ellipsoid. Because the sphere has the smallest surface area
among all inclusion shapes of a fixed volume, the surface tension tends to resist any
morphological changes that would lower the strain energy. Thus, the balance between the
elastic energy and the surfuce energy gives the cquilibrium inclusion shape, which is often
found to be a ncarly circular onc. Much of the recent work (e.g. Johnson and Cahn, 1984,
Miyazaki et al., 1986 ; Larala et al.. 1989 ; Kaufman er al., 1989) has indicated that, under
a sufficiently-large deviatoric stress state, clastically-misfitting inclusions and precipitates
in a solid matrix indeed undergo a shape transition so that an originally-circular inclusion
tends to evolve by diffusion processes into a shape of lower symmetry in order to minimize
the total freec energy in the stressed thermomechanical system. A circular inclusion in the
limit of an infinitc radius becomes a straight bimaterial interface whose mechanical prop-
erties are of growing interest due to rapid advances in composite materials technology.
Under sufficiently large stresses, a straight interface may undergo shape transitions into
slightly undulating profiles. Srolovitz (1989) has recently shown that, in processes such as
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thin-film growth, surface evaporation and condensation. material surfaces under a bulk
stress are unstable against diffusional perturbations of sufficiently long wavelengths. Evans
and Hutchinson (1989) have pointed out that a non-planar interface morphology has a
significant effect on the interface fracture toughness.

In applications such as Ostwald ripening, interface stability and precipitate stability,
nucleation and growth, one often needs to consider the mechanics problem of an inclusion
or interface with a shape slightly perturbed from a circle or a straight line. However, due
to the lack of an efficient analytical approach. most of the research work has to assume an
elliptical inclusion shape (e.g. Johnson and Cahn, 1984) or use a boundary integral method
(McFadden et al.. 1986) which involves heavy numerical computations. In this paper we
develop a first-order boundary perturbation analysis for an inclusion whose shape deviates
slightly, otherwise arbitrarily, from a reference circle. Based on Muskhelishvilli’s (1953)
complex variable representations, we analyze a nearly-circular inclusion and a slightly-undu-
lating interface in isotropic solids. deriving perturbation solutions which are accurate to
the first order in the deviation of the inclusion shape from a circle or a straight line.

The reference solutions for a perfectly-circular inclusion are essential in our per-
turbation procedure. By analytic continuation of complex potential functions across the
interface circle, it is first shownt that the reference solutions may be directly obtained from
those of a homogeneous infinite plane by universal relations which are independent of the
loading conditions. The solutions for the deviatoric stress components along the interface
are used to construct perturbation solutions for an inclusion with a nearly-circular shape
or for an interface with a slightly-wavy profile. Our results may also be specialized to cases
such as holes, rigid inclusions, disks and surfaces with shape slightly perturbed from a circle
or a straight linc. To demonstrate the kind of problems to which the perturbation solutions
can be applied, we study in suflicient detail the case of a traction-free surface and show
that, under sufficiently-large bulk stresses, a perfectly-flat surface becomes unstable against
a range of diffusional perturbations bounded by two critical wavelengths, Given such
an intrinsic thermodynamic tendency for surfaces to become rough, further examination
indicates that even slight undulation caused by the unstable perturbations can result in
substantial stress concentration along the surface, which may then cause plastic deformation
or brittle fracture before the bulk stress reaches a critical level. We also perform a finite
element calculation for comparison, with results indicating that the perturbation analysis
is valid for surface undulations with a moderate magnitude.

COMPLEX VARIABLE REPRESENTATION

Complex potentials in 2D elasticity

In considering the inclusion problems shown in Fig. la we will use the following
notations for the displacement and stress components in the Cartesian (x, ») and polar (7, 0)
coordinates

u=u +iu,, 0=0.+0, =0,+0y,

z

. . i
0,y =0 +2i0,, L =0w—0,+2ic,=¢c"Z, nH

I

Apparently, ¢ denotes the “hydrostatic™ part of the stress state while T represents the
*deviatoric’ part whose absolute magnitude gives the value of the maximum shear stress.
Following Muskhelishvilli (1953), two complex potentials ¢(z) and ¢(z) can be used to
represent the displacement as

—2uu = —Kkp(2)+z¢' () + () 2

and the stresses as

t After completion of this manuscript, the author found that Honein and Herrmann (1990) have addressed
the circular inclusion problem using a similar but more sophisticated method. However, for completeness and for
better illustration of the boundary perturbation technique, a brief solution procedure is still preserved in this

paper.
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Fig. 1. (a4) A circular inclusion No. | embedded in a dissimilar material No. 2. (b) A bimaterial
interfice between Nos [ and 2.

o =2[¢'()+¢()]

L=2("(2)+¢'(2)] &)
where g and v are the shear modulus and Poisson ratio respectively ; k = 3 —4v for plane
strain and x = (3 —v)/(1 +v) for plane stress.

The boundary condition for prescribed traction along a boundary contour 4Q can be
written in the form

$(2)+:0'C)+¢¥ () = f+constant on IQ @)

where the quantity f is related to the traction ¢, by the expression

f= .J (tc+it,) ds (5)

which is proportional to the resultant force on an arc from a fixed point A to a variable
point - moving along the boundary.

Under a coordinate translation -, = =z —s, the complex potentials ¢,(z,), ¥.(z4) are
related to the solutions ¢(z), Y(z) for the same problem by
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O(2) = Pulz—3). Y(2) = iy (z—5) = 5P (z—3). (6)

Bimaterial mismatch constants

Let an inclusion of material No. | be embedded in an otherwise-homogeneous infinite
plane of a dissimilar material No. 2. Dundurs (1969) observed that solutions to such
bimaterial problems may be expressed via the following two mismatch constants

_ et D=+ Dy (e D=k = Doy (7)

*= (I\'y_+l)f’/ll:+('\'|+l)//l| ' c (‘\:+]),ll:+(;\[+l);lx ’

Subscripts | and 2 refer to the inclusion No. | and the matrix No. 2, respectively. Both x
and B vanish when the elastic dissimilarity does. By requiring — 1 <v < 1.2 and ¢ > 0. it
can be shown that 2 and f are confined to a purallelogram in the (z. ff) plane enclosed by
a= tland x—4f = +I. Forinclusion problems, it is more convenient to use the auxiliary
constants A, I1. A. Q which are defined as

Az THB R —mp B tie=l
T=B T U tw IR NS T
A= a+f K=K/ o= L=l )

B R P | 7 R TS 1T

These constants arc related by A(2. f§) = A(~2, —ff) and Q(x. f5) = [1(~ 2. — f1). The values
of A and I will be interchanged with A and Q when the two materials Nos | and 2 are
switched. It may be shown that —1 <A, A <3 and -1 <11, Q < [. The constant Il is
positive for sofler inclusions (. > g) but negative for harder inclusions (g, < ).

CIRCULAR INCLUSIONS

General solution

Consider a perfectly-circular inclusion in |z] < «¢ in a body which s subjected to
externally-applied loads and which may also contain various (singularities) defects such as
dislocations and transformation strains. When all the singularity points lic outside the
inclusion, assume that the potential solutions for an infinite homogencous plane No. 2 are
known as ¢ (z) and ¢ (=) which are analytic in the region |z| < «. Under the same loading
conditions, let the solutions for a circular inclusion be written as

P2 = )+D(z). Y (&) =y, C)+W() )

where functions ®(z) and ‘¥(2) represent the “field disturbance™ due to the inclusion. We
shall attach subscripts | and 2 to functions ¢(z). (=) and () and W(z) when inclusion
No. I and matrix No. 2 are explicitly referred to; for example, ¢p(z) will be written as ¢ (2)
in the inclusion region and as ¢,(z) in the matrix region. Obviously, functions @, (z), ¥, (z)
are analytic in the region |z| < a while ®,(z). W.(2) are analytic in |z > a, which implics
the following behavior :

Oi(2) = aptazai+ s W) =botbizb 4 (5 <)
D,(2) = ¢ /z+cafz + . Y,2)=d,/z+d:)z"+ (Iz] > a) (10)

in their respective analytic regions.
The traction continuity across the interface |z| = a requires
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[f1=1[6()+=6 ) +¥()] =0 (1)

where [ /] denotes the jump in quantity f across the interface. Substituting (9) into (11)
while replacing = by a’/- along the interface circle |z} = a, one may rewrite (11) as

®,()+ 8, ( ’)w ( ) :(2) + =% ( )w ( ) (12)

Following (10). it can be observed that ®,(z), z®%(a?/z), ¥,(a’/z) are analytic in || < a,
while ®,(z), z[®(a*/z)—a\]. ¥\(a*/z) are analytic in |z| > a. Subtracting a term zd,
[a, = ®,(0)] from both sides of (12), collecting functions which are analytic in |z| < a and
[z| > a and using standard procedure of analytic continuation, one finds the relations

o0 = (%) (5)-=
o wi()-a] o0, (%) o

Repeating the saume procedure for the displacement continuity condition

o] = l[—mb(z) +::>'(:)+~/z(:)]l ~0 (13)

and using the relations given in (13) leads to

D(2) = A, (2) +Qz{d, + . (0))

0(3) = n[nﬁ; (‘{_—2—)—:&40)+JL<”_:2>] (s)

where the constants A, [T and Q are given in (8). Differentiating the first of (15) with respect
to - and then letting = = 0, the unknown constant «, is found to be

_(A+Q%)¢, (0)+Q(I+A)(5®(0)
: 1-Q

(16)
Combining (13)-(16), the final solutions are obtained as

$i() = (l+/\)[¢ )+ Qz(‘5 0)+Q¢% (0))]

¥i) = (1 +n)¢n(:)—(A~n)3__i[¢; () —¢%(0)]

01 = 9.0 +1] 5. (L) -x5.0+9. (%)

WA = ¥ () + AL ("—) ca ry[dh(

-

where
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A+ Q)¢ (0) +Q(1 +A)F' (0
L (:‘:Q‘ +NEO L s o). (18)

Superscript 0 emphasizes that the present solutions are for a perfectly-circular inclusion. It
may be verified that the imaginary part of ¢, (0) does not affect the stress field. One may
sometimes modify ¢, (=) such that ¢’ (0) is real and simplify (17). (18) accordingly. The
expressions derived in (17). (18) are consistent with those derived by Honein and Herrmann
(1990), in slightly different notations. These solutions will be used to construct perturbation
solutions for nearly-circular inclusions in the next section. Equations (17) are universal in
the sense that they are independent of the loading conditions. Once the problem of a
homogeneous infinite plane is solved. the solution to a circular inclusion under the same
loading condition can be immediately determined.

For example. in the case of remote loading by uniform stresses g7, it is well known
that

¢ =024 Y, ()=Z.:1 (19)

where o, =0, +0 and L, =g -0 +2ia/. The solutions to a circular inclusion sub-
jected to the same remote loads are obtained from (17) as

I1+Ao,:

¢()"* 04 i) =0+IMHE, 22

N Q 2 4
$2() =‘;(a,:+2ﬂ£, ”) i) =L(z,.—+?fﬂ a. ' +0E, “‘> (20)

which are consistent with the expressions given in Sendeckyj (1970). A uniform stress state
is predicted inside the inclusion as

o l+/\

oy = l—Q V= (1+ME,. (21

The stresses along the inclusion boundary in the matrix region are

A+Q

6 =Re[o,-2ML ¢, XY=, —-MNE e ™~ T=q e M, (22)
For uniaxial tension when ¢ = 0, = Z,. = T, the hoop stresses along |z| = a are
1 1+A 1 A+Q
ol = ;[I«_-t -+ (1 +IT) cos 70]7‘, % = 3 [l T_o + (1 =3M)cos 20] T. (23)

While the maximum of a¥,, always occurs at 0 = 0, ¢%, is maximized at 8 = 0 when
—1 < X < 1/3 (softer or slightly-harder inclusions) but at 8§ = n/2 when 1/3 <1 < I
(much-harder inclusions).

The universal relations (17) can be also used to study, for example, a dislocation at a
position s = x,+i), with Burgers vector b = b +ib, interacting with an inclusion. The
solution for a straight dislocation in an infinite body is

PR - Sh
() ik + 1) (- Ve () mi(x+ 1) (z— )( 5+:—-V)' 29

In applying (17) to (24). one needs to take the logarithmic branch cut of In(z—s5) to be
outside the inclusion region so that ¢ (z) and ¥, () are analytic within || < a.
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If all the singularity points lie within the inclusion region. the corresponding formulae
may be derived following similar steps from (9) to (18). Letting ¢, (z) and ¥ (2} now
denote the solutions for a homogeneous infinite plane of material No. | which are analytic
in |z] >a, it can be shown that the inclusion solutions are (also see Honein and Herrmann,
1990)

QY (c+Q¢
st = sal (o0 ()| B

V) = UL () + A8, ('—) a_{(_¢<ﬂ>+i[(g(i)+.p(?_>]}

$2(2) = (1+4)¢,.(2)

ts

[

Q(c +Qc) a

YiIE) = (1+ QY () - (8- Q) ¢ O+ = < (25)

where

¢ = lim >4, ). (26)

Onc may show that ¢ must be real when the total moment vanishes on a closed contour
surrounding the inclusion region |2 < .

As an example of this case, consider that the inclusion is subjected to a stress-frec
transformation strain &) in the sense of Eshelby (1957). Letting

1 H r T
g = S (b, F
I\'|+|( l”)
. f S
‘—h’ 4 el el 2iet) @7
!

it is known that (c.g. Jaswon and Bhargava, 1960)
b.()=—a'z, Y (2)=-ZI': in |zl <a

2 2 4
$.0= -5 Y. =-20"T-£% in |g>a (28)

Substituting these into (25) immediately yields

1+Q
R =~ rgo’n N = (144
P = —(1+8ETL i) = =2 :mj}g L —(+msT (29)

Comparing (29) and (20) with (28) suggests that under remote loading (6,.XZ,) and the
transformation strain (¢', L"), the effect of the non-homogencous inclusion is equivalent
to an effective transformation strain given by

o T AER RO
= -2 1-a o oo Lo = —Z . M2+Z°(1+4) (30)

in a completely-homogeneous material. This is consistent with the concept of “*equivalent
inclusion™ introduced by Eshelby (1957).
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The universal relations (25) require that the functions ¢, (z) and ¥, (z) be analytic in
}z| > a. This may not be true if there exists a net Burgers vector or net resultant force within
the inclusion since in those cases logarithmic functions appear in ¢ (z) and ¥, () and have
branch cuts going to infinity. However, one may solve such problems by first differentiating
the displacement and traction continuity conditions with respect to = so that only the
derivatives of ¢, (=) and ¢, () are involved in the analytic continuation procedure. We do
not pursue the details here.

Special cases : circular holes and disks
The following two special cases can be considered.

(i) An infinite plane with a circular hole or rigid inclusion. In the case of a circular hole
one has i, =0, 2= A =[1 = —1 so that (17) reduces to ¢(z) = yJ(z) = 0 and

B2) = 6.()— [:as; (‘L) —:F O+ (1)]

Vi) = wt(:)~6n<‘{})— A TAURT A

S e

This relation has been derived by Honcin and Herrmann (1988). Similarly, the solution for
a rigid circular inclusion can be obtained by setting relevant constants in (17) as y, = oo,
a=lLA=1/M=x,andQ = —1.

(it) A circular disk. To specialize (25) to a circular disk by letting u, =0 and
A = Q = — |, one must enforce the condition that there is no net resultant force or moment
on the disk. This condition requires that the constant ¢ of (25) be real so that one has

$2(z) = y3(z) = 0and

) = b () - [:«5; (‘i)w (“—2)]4.
Vi) =¥ () -y (a-)—aj{c—m(‘i).; 2[,5 (‘%)+¢ (

b
A straight interface

The case of a straight interface between two dissimilar materials (Fig. 1b) may be
viewed as an inclusion with an infinite radius. Assuming that all the singularities lie in
region No. 2 so that ¢ (z), ¥, (z) are the solutions for a homogencous infinite plane of
No. 2, it may be shown that the solutions to the straight interface are

2z

-

8

n‘ﬁ

"~

[¥]

V() = (1 +A)d(2)

$2() = ¢ () + 287 (2) + ¥ . (2)]

Yi) = 1+ My () ~ (A= )z¢% (2)

Y3 = ¥ () + AP () =Nz () +24% () + 47 (2)). (33)
Similar relations in slightly different notations can be found in Suo (1989) and Honein and
Herrmann (1990). When the singularities lie within No. 1, the same relations hold when

replacing A, IT with A, Q and reinterpreting ¢ (), ¥ . (z) as the solutions to an infinite
plane of No. 1.
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reference circle

perturbed inclusion

o

A

Fig. 2. A nearly-circular inclusion whose shape a(8) deviates slightly from a reference circle of
radius «a.

BOUNDARY PERTURBATION: NEARLY-CIRCULAR INCLUSIONS

General solution

We have shown that the solution to a circular inclusion can be obtained from that of
a homogeneous infinite plane via the universal relations given in (17), (25). Based on the
solutions for a circular inclusion, we will develop a first-order perturbation analysis for
nearly-circular inclusions whose shapes may deviate slightly, but otherwise arbitrarily, from
a circle.

Figure 2 shows an inclusion bounded by a contour I which differs slightly from a
reference circle of radius « so that a point z on ™ at a polar angle 0 can be written as

z=[1+AO)]ae’ (34)

where the real quantity A(0) « 1t gives the perturbation magnitude at the given position

0. The actual inclusion shape is described by r = a(f) = a[l + A(0)] which may be viewed

as being perturbed from the reference circle at {z| = a by a small perturbation aA(9).
Equation (34) can be alternatively written as

z={[1+4Q), ({=ae’ (35)

where { moves along the reference circle || = a. Let the solutions for the reference circular
inclusion be expressed in terms of the potentials ¢°(z) and y°(z). The traction and dis-
placement due to ¢°(z) and ¥°(z) are continuous across |{| = a so that

Y TR o TR
[6°0+FD+3°0] =, { K hrie iy (O] —0. (6
Differentiating the above with respect to { while noting that { = a?/{ yields
-kp” () +d" Q] [e ™[ Q+¢" Q)] _*[2°
A B H Rar ¢7

where Z° is the solution for the deviatoric stress components along the reference circular
inclusion, such as those given in (21). (22) under remote-loading conditions.
The solution to the actual inclusion shape may be written in a perturbation form

t The perturbation magnitude is magnified in Fig. 2 for illustration.
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H(2) =" () +P(). Y(2) =y ")+ ¥ (38)
where, in subscripted notation, ®,(z) and W (:) are analytic in the inclusion while ®.(z)
and ¥.(z) are analytic in the matrix, admitting the same asymptotic behaviors as in (10).
The same traction and displacement continuity conditions (11), (14) must hold along

the inclusion boundary I'. As a point = along [" is perturbed to the reference position { by
(35). ¢(z) and (=) are perturbed as

$(2) = ")+ A" () + Q). Y(2) = Y (O + AW () +P (). (39)

Substituting (39) into (11). (14). using (37) and neglecting higher-order terms lead to

[OO)+{D O +PD] = —AQLC[E]

—rn®(C VF-F@—“‘ = 20
[0+ FGA] 2] (@0

Thus, to within first-order accuracy, the problem of a nearly-circular inclusion is equivalent
to a perfectly-circular inclusion with some “prescribed™ displacement and traction dis-
continuity across the interface. Apparcntly, only the deviatoric part of the stress distribution
along the interface affects the perturbation tield.

Noting that the traction continuity for the reference inclusion requires [o;,] = 0 and
[e%] = 0. eqns (40) can be rearranged into the following more convenient form

O, () = QLD+ (D= (T +A)D () = QA)TEY
D, (0) = ML) + WO = (1 +A)D () = TTA(IES. @1)

The unknown functions ®(2), ¥ ,(z), ¥,(z) and ‘¥, (z) can be determined from the above
cquations following the mcthod of Muskhelishvillh (1953). For example, applying the
operator

Ly A (42)
P P e
for |z| < u to the first of (41) and using the expansion (10) lead to
Q AQ)ZEY
®,(:) = — @) LS+ Qa o+ 2d,+ ). (43)

2ni m-a 66— 2

Recall that ¢, = ©(0). Differentiating thc above once with respect to z, letting = = 0 on
both sides and making variable transformation { = a ¢", onc obtains

Q pd 3 .
a,-Qa, = ;- L AO)E(0) ¢ " do. (44)

The unknown constant a, is then found to be

Q l i 20 ) it
“ETTYE %J AO)E}O) e ™ +QE}(0) €] dO. (45)

Applying the same operator in (42) for |z| > a to the second of (41) gives
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N0 Ao
0o = — L AQRZ: (46)

Zn:i Jilea §—2

Taking the complex conjugate of (41) and repeating the above procedure leads to the
determination of ¥ ,(-) and W¥,(z). Noting that constant terms in the potential functions
do not affect the stress field and hence can be dropped. it is finally found that

Q AOZEY
®() =50 ~__-—(:_S Ldo+Qd, -
. n AQKES |
0=~ 3?35—::*‘*5 @7

and

27

N AQNES . 1+Q <a2> at
\Pz(-)—ﬁ P es (=7 dc+ 9) &\ — —?‘D:(J (48)

1 AOEY 1+ : :
0= onf A Bl (7). Cioi-a

where a, is given by (45). Far away from the inclusion, the potentials behave as 1/z and
the stressed decay as 1/r°. The final solutions for a ncarly circular inclusion are obtained
by combining (47), (48) with the reference solutions for a perfectly-circular inclusion that
may be derived from (17), (25). Such a perturbation procedure can be immediately carried
out once the inclusion shape a(0) (= a[l + A(0)]) and the reference solutions £, 9 are
known. In the Appendix we show that the general solutions given in (47), (48) may be used
to develop integral formulace for caleulating stresses along the inclusion boundary.

Cosine wavy inclusion boundarics
It is interesting to consider inclusions with the following cosine shape function:

a(t) = uy(1 4 A cos nl) (49)

where a,, A are real constants with 4 « |. The case n = | corresponds to a rigid translation
of the circle r = a, by amount A4 in the x direction and n =2 corresponds to slightly
squeezing the circle into an ellipse. The above cosine function can also simulate polygon
shapes with smoothed corners for n > 3. As shown in Fig. 3, the polygon shapes are best
approximated by (49) when the curvature is required to vanish at the most concave locations
where cos n) = — 1, corresponding to having

A= 1/(1+4n%. (50)

The fact that 4 < 0.1 when 1 2 3 indicates that the polygon shapes given by (49), (50)
represent small perturbations from a circle, and suggests use of the boundary perturbation
formula (47), (48) for determining the stress solutions.

For simplicity, we shall only consider the case of remote loading so that the reference
solutions £¢ and X9 are those given in (21), (22) which may be rewritten as

4 A Q 2
%0 = (1+ME,, X =zx—n£,%——+-on‘c’-i.

1-Q S

Substituting the cosine wavy perturbation
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al@)=1+ coS n8/(1+n%)

>
]
A
2
[
oY

(a1 {0}

n=5 n=6
{cy (&)

Fig. 3. Smooth polygonal shapes simuluted by cosine wavy inclusion shapes: (a} # = 3: equilateral
triangle; (b) n = 4: squarce; (c) # = §: pentagon; (d) # = 6: hexagon.

Ay o
AQ =5 (:,, + é,;) (52)

and the reference solutions (51) into (47), (48), and then carrying out the contour inte-
grations by the Cauchy integration theorem leads to the final solutions for any wavenumber
n. We summarize the results as follows :

(i) Translation mode n = 1. In this case, it may be shown that the perturbation solutions
can be simply written as

D) = (== A). ¥(2) = —AP" (- A)+Y"(z~A) (53)

within first-order accuracy in 4, where $°(z) and §°(z) are given by (20). Comparing with
(6) reveals that the above solution simply states that the # = | mode represents a rigid
translation of the circular inclusion by A in the x direction which is equivalent to a
coordinate translation to =, = 2 — 4.

(ii) Elliptical mode n = 2. In this case we find

(R

I+ A 241+ 11
$(z) = [+ (1+1)

g%t g &- +QE,,)}

4
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¢2(~) é.( )+ 2 (X'w :J l"n at _)
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Aag? A+ 4t N+0 (-—-MA+Q) 2
i I3 2 el —— ——— — —
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These solutions are just the first-order expansion in A of the exact solutions for an elliptical
inclusion which have been explicitly listed in Sendeckyj (1970).

(i1i) Polvgon mode n > 3. The following solutions may be derived for inclusions with
a smooth polygon shape:

sl 1+A =Y
¢|(Z)=Z[I_QO'1,+2AQ(I+H)£,_\<;) ]

L+ A+Q R =y
lIll(-)— 2 {EI—A[I—Q am(;) +n2r(a>
Qn—1E (:)M Q s +az ()]}
R S e Bl v L 00T

o, Alld a\' A+Q faY"? aYy~*
¢2(~)=¢2(~)+'_2—?[2~0(E>__l__ﬁan<:) nzr(:) ]

2 n—2
g_«{E‘[l—(l—ﬂ)(l+l'l)+l’l’(n——3)]( )

" .

These solutions may be used to study the perturbation cffects of smooth polygonal inclusions
such as a cuboid when n = 4, B

Of coursc, the general perturbation formulae derived here may be specialized to slightly-
perturbed circular holes and disks in the limiting moduli cases. However, we do not pursue
the details here.

[ ST
t | R

Ya(2) = ¢3(:) —

[¥]

e (e nm(‘f)"—n(nu)zn(

R~

A SLIGHTLY-UNDULATING INTERFACE BETWEEN TWO DISSIMILAR MATERIALS

The same perturbation procedure may be applied to study a slightly-undulating
interface (Fig. 4) between two semi-infinite dissimilar materials Nos | and 2. The shape
of the interface differs slightly from a straight line, which is described by the following per-
turbation

D= 14iA() (56)

where ¢ denotes a point on the reference straight interface along the real x axis and y = A(x)

Fig. 4. A slightly-undulating interface which is perturbed from a straight line by A(1).
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gives the undulating profile of the actual intertace. Substituting the first-order perturbation
expressions

G(2) = () +B(2) = $"(1) +iA()P" (1) + D(1)

V() =y )+ V) = () +i4W () + () (57)

into the displacement and traction continuity conditions (11), (14) yields two equations

O (N=QUP (N+TP,(D] -1 +A)D.(1) = —iQA(Z()
Q) —MDUD+P. (D] —(1+2)D (1) = —iTANOEN (D) (58)
for determining the unknown perturbation functions @ (). W¥,(z), ©,(z) and W¥,(-). Here

¢"(2) and (=) denote the reference solutions for a perfectly-straight interface as shown
in Fig. Ib. Applying the operator

1 [~ dt
i o t—=

(59

for Im[z] > 0 to the first of (58) and for Im[z] < 0 to the second of (58). then repeating
the same for their complex conjugates, lead to the final solutions

() - ugJ A(:)iiﬁ(r) o

oo ﬂrﬂ A(:);?.E(I) N

w2 = 2|n J Ami:zm it IEH B(5)— = (2)

Wo(z) = 217: { A(’lz?f({’ dr+ '—;9 B, (2) =204 (2). (60)

For example, consider a wavy interface with wavelength 2 and amplitude A so that
A1) = A cos kt (6l)

where & = 2r//i. Assume that the reference stress distributions along the straight interface
are uniform. Carrying out the contour integrations in (60) by the Cauchy residue theorem,
one finds

$i(z) = aiz/4 - i; Q59 s

Vi) = Zi2- l; (21— (1 + EY — QikzE) o

b:6) — ot A sz

0 = T2 - 2 (B8 - (1 + Q- MikeEY e .

which gives the stress field as
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o, =00+24A0k e ¥ Re[E0e*]
T, = IV dk et [T0— 080 4 2QkE) — (1 + MEY e
0. =024k e Re[Ee ]

T, = E0— Ak er [E0-TEL+ 2 MAE? — (1 + Q)£ e~ (63)

Observe that the perturbation effect decays exponentially in the form of e = 2**** at positions
away from the interface.

STABILITY AND STRESS ANALYSIS OF SURFACES OF A STRESSED SOLID

Morphological instabilities along a surface

To demonstrate the kind of applications our perturbation solutions can be used for,
we examine a traction-free surface under a lateral bulk stress T as shown in Fig. 5. Letting
p=0A=M=—-1,6)=X)=0and ¢} = —~Z? = 6%, = T in (63) gives the first-order
solutions for a cosine wavy surface as

o,=T(-24ke"* coskx)., L,= —T[l-24ke" (1 —-ky)e *] (64)

which match the solutions derived by Srolovitz (1989) and Gao (1991a) via different
approaches. In particular, the tangential stress along the surfuace is predicted as

y flat surface
| SR
T .— T
(a)
Nonflat surface
X
- —
(o)
S
sl 2%‘-\
x* <
()

Fig. 5. (a) A perfectly-flat surface of a stressed solid ; (b) a slightly-undulating surface ; (c) transport
of mass in the process of surface diffusion from the configuration of (a) to that of (b).
SAS 2A:6-D
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4 A :1 -
0.(x) = T(l - i}— cos jj) (65)

I3

In view of the physical possibility of diffusional mass transport along a material surface,
a fundamental stability question can be posed. namely : is a perfectly-flat plane surface (Fig.
Sa) stable. i.e. is the plane surface energetically the most preferred configuration for any
stress 77 If not, what is the stability condition, i.e. what are the critical values of T7?
The perturbation results we derived here can be used to investigate the stability issue by
considering the total energy change associated with a small wavy perturbation along the
surface (Fig. 5b). The strain energy variation for the shape change of a traction-free surface
was studied by Rice and Drucker (1967). In one period 0 < x < 4, one may write

ol = Ju w(x)dA(x)dx (66)

where dA(x) is an infinitesimal surface perturbation and w(x) is the strain energy density
function along the surface. The stress distribution given in eqn (65) for a wavy surface
results in the following strain encrgy density along the surface :

)T A 2 ,
1T (1 LI lf>+0(,t~). (67)
164 A

K+
w{x) = | p

[N
6/! (T,,(X) -

In the more general case, the strain energy variation due to an arbitrary perturbation along
a bimaterial interface can be found in Eshelby (1970).

Let a wavy surface with current amplitude A be subjected to an additional infinitesimal
perturbation o4 cos (2rx/4). This is equivalent to enlarging the wave amplitude from A4 to
A+ 0.4, Replacing the dA(x) in eqn (66) by 54 cos (2rx/4), dividing both sides of (66) by
oA, then letting .4 approach zero, one finds the rate of change of strain energy in one
period (0 < v < 4) as

A : ) . .
v J Wiy cos T ay = = KX Lo, (68)
A 0 p 4

Equation (68) suggests that the strain energy is actually lowered by enlarging the wave
amplitude A, corresponding to enlarging the perturbation. This provides a fundamental
mechanism for driving initially-flat surfaces into an undulating morphology via diffusional
mass transport. Let the wavy surface shown in Fig. 5b be viewed as being perturbed
incrementally, by integrating infinitesimal perturbations dA, from the perfectly-flat con-
figuration when A4 = 0 to the current wave amplitude A. In this process, the total strain
encrgy change is calculated by integrating the derivative (68), giving

toU + DT,
AU=J TV dA = —(L%LL— nd*+0(AY). (69)

) (1/‘
Thus the cnergy change due to the perturbation is of order 4°. In the same process. the
surface encrgy and possibly the gravitational potential energy are also subjected to

variations. Consider the total energy change in one period of the wavy perturbation. The
surface encrgy change is proportional to the increase in the surface area, i.e.

AE, = ','J (J1+[A ()] =1 dx = y4°7°/4 (70)
0

where the material constant y is the specific surface energy of the solid. This consideration
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is analogous to the well-known argument by Griffith (1921) in considering the balance
between the strain energy release and surface energy change in a brittle fracture process.

The wavy perturbation involves transport of mass from the shaded area S, to another
area S. (Fig. 5¢). which may result in a net change AE, in the gravitational potential energy.
Such a change may be significant in applications such as the topological undulation along
the Earth’s surface due to tectonic stresses. It is elementary to show that

AE, = pgid®/4 (1)

where p. g denote, respectively, the material density and the gravity constant. Summing all
the terms in eqns (69)-(71) yields the overall energy change as

L) . (k+baT? i
AE, =5 {}'ﬂ' - (»'\js-;—’i“- At %‘q /.*}A’ +0(4"). (72)

If the quadratic expression within the curly bracket (as a coefficient of 4°) is always positive,
a perfectly-flat surface would be stable against all perturbations, in the sense that any
change in surface profiie will result in an increase in the total energy of the system. Define
two material constants

r - "E{,f |
L= Zﬂﬁ/ﬂy. T = \/;-ﬂ(py*/)' . (73)

The stability condition can be written as

T<T (74)

which ensures that there are no real roots for the quadratic function in eqn (72). When the
stability condition (74) is violated, two real and positive roots emerge as

by = ATITY £ /U= (TIT)). (75)

The surface is then found to be unstable against perturbations between 4, and 4,. Thus the
two critical wavelengths 4, and 4, provide an instability range in which surface morphology
bears the tendency to become rough. [tis clear from (72) that perturbations with very small
and very large wavelengths are stable since for small 4 the surface tension term dominates,
and for large 4 the gravity term dominates. When the stress exceeds the critical level T,
material surfaces will tend to undulate in a non-planar configuration. In a similar vein, it
can be shown (work in progress) that bimaterial interfaces under various loading conditions
may exhibit the same type of tendency toward roughness. Evans and Hutchinson (1989)
have pointed out that the non-planarity along an interface has a significant effect on the
interface fracture toughness.

Table 1 lists values of 7' and £ for a number of materials. It is found that £ is of the
order of | em and T is of the order of | MPa. When the bulk stress level T is close to 7T,
the critical wavelengths are in the order of 1 cm. This length scale is sufficiently large that

Table |

yUm Y o (Pa) oy (P1)  pkgmY T (Pa) A (m)
Ag 114 3.38x 10" - 10.5x 10" 599x10° 0.021
Al 098 265x 10" 14x10° 2.7x10° 3.616x10°  0.038
Au 1485 3.10x10" — 19.32x 10"  748x10° 0018
Cu L725 546x10™  3.1x10° 896x10°  7.93x10° 0.028
Fe 195 86x 10"  28x1(0° 7.87x 10 9.7x10°  0.032
NI 9.47 x 10" - 89x10'° 108x10° 0.032

w 2.80 16.0 x 10" 4.1 x 10" 19.3x10' 17.96x10*  0.024
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one would expect observations of the morphological instabilities along a surface to be
routine. However. we find that the value of T exceeds (by order of 10) the vield stress for
all the materials listed tn Table 1. Thus, assuming that under normal conditions the
bulk stress is limited to the yield stress. the effect of gravity would prohibit the surface
morphological changes. While in most engineering structures the stress level is below 7. for
applications such as thin films on substrate the stress level can be as large as | GPa. As T
is increased from T, the critical wavelength 4, approaches infinity while 4, quickly assumes
the value

AT _ 8myy
2T (k+1)T?

(76)

which is independent of the gravity constant. In fact. 4, is within 1% of 4 once T/T > 2.
Thus, as far as the micro-level surface morphology is concerned, the gravitational energy
terms can be ignored in the stability analysis. The critical wavelength 4. has been obtained
by Srolovitz (1989) using a different approach by considering the detailed process of surface
diffusion driven by the gradient of chemical potential along a perturbed surface. Srolovitz
(1989) also showed that the most unstable perturbation mode occurs at /,, = (4/3)4.. Since
the driving force per unit surface area for diffusion is proportional to —AE,, /4 and the
diffusion process involves transport of mass in an area of order 44 over a distance 4 (Fig.
5¢), one may justify that the most unstable perturbation mode corresponds to maximizing
the quantity —AE,,,/4". Using the material constants provided in Table 1, it may be verified
that for stresses in the giga Pascal range, the values 4, and 24, are in the nanometer
(107° m) range. This is consistent with the reported values (Berger er al., 1988) on the
island-like growth along the surface of an InGaAs film on GaAs substrate where the stress
within the film can be as targe as 5.8 GPa due to a 3% lattice mismatch and the island
spacing is obscrved to be of the order of 6 nm.

Stress concentration at slightlv-undulating surfaces

Given the intrinsic undulating tendency of a stressed surface described above, it is
necessary to examine the stress concentration clfects caused by the undulation. Following
(65), the maximum stress concentration occurs at the wave troughs such as x = 4/2 where

O e = T<l + ‘—1%11)4»0(/4’). (77)

The remarkable fact is: the ratio A//4 affects the magnitude of the stress concentration by
a constant coefficient equal to 4r = 12.566, suggesting that slight perturbations can magnify
the bulk stress T easily by a factor of 2 or 3. For example, an undulating surface with
A/i = 0.1 magnifies the bulk stress by roughly 2.25. This value is only approximate, but it
has been verified by a finite element calculation (to be described shortly) to be within 8%
accuracy. It is thus expected that the micro-level bumps and troughs can result in a
significant stress concentration along the surface. The stress concentration may lead to
mechanical failures along the surface and may have more consequences for piezoelectric
materials where the deformation is coupled to an applied electric field. Using an approach
based on properties of elastic Green's functions, Gao (1991a) has also shown that the
3D problem of a biaxially-stressed non-planar surface exhibits a similar level of stress
concentration.

The kind of stability and stress analyses illustrated above, which may also be carried
out for general bimaterial interfaces and inclusion problems, has significant implications for
modern technological innovations. For example, layered semiconductor thin-film structures
with different lattice parameters have found numerous applications in the development of
electronic and optical devices. The lattice mismatch creates strain which results in the
formation of dislocations and cracks in the structure. The nucleation of dislocations is also
observed in thin-film structures that comprise integrated circuit and magnetic disks. It is of
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Perturbation

. F.EM.

trough : 1+dr A/A

o1 — o2 AL

.2 peak :1-d4r A/A

Fig. 6. The stress concentration along a wavy surface: perturbation solutions versus FEM results
at a wave trough and a wave peak.

extremely-high technological importance to reduce the dislocation densities to manufacture
high-performance, high-yicld electronic devices. Nix (1989) has recently reviewed some of
the mechanical propertics of thin films on substrates, and pointed out that very large stresses
(c.g. 0.5 GPa), generated by strain sources such as thermal mismatch and epitaxial lattice
mismatch, may be present to cause plastic deformation and fracture. Under such high
stresscs, a slight magnification of the bulk stress by surface or interface perturbations such
as micro-level bumps and troughs is likely to play a role in triggering nucleation processes
of dislocations and cracks. Assume that the surface morphology of the thin films displays
slight undulations at the micro level with 4/4 = 0.1. Our perturbation result (77) then
suggests that the surface stress may be magnified to a level around | GPa, much higher
than the bulk stress value. Therefore, at least in highly-stressed thin films, the surface
morphology can play an important role in activating formation of dislocations and cracks.
Once formed, these surface flaws can cause significant strength degradation and malfunction
of semiconductor devices, sometimes even leading to ultimate structural failure before the
bulk stress reaches a critical level. Our stability study may eventually suggest methods to
control surface and interface morphology in manufacturing processes to achieve desired
mechanical properties for thin-film devices.

FEM calculation

To examine the range of validity of the perturbation results, we have performed a finite
element calculation for the wavy surface shown in Fig. 5b. The stress concentration factor
is computed, for different ratios of A/4, at the wave peaks and troughs where minimum
and maximum stress occurs. The symmetry condition u, = 0 is imposed at a wave trough
or peak during calculation. We use an 8-noded isoparametric Lagrangian element with an
intensively-refined mesh near the surface regions. Figure 6 shows the FEM results compared
with the perturbation solutions. At a wave trough, the perturbation solution 1 +4n(A4/4)
for the maximum stress concentration is found to be within 8% of the FEM data for
A4 < 0.1 and within 20% for 4/4 < 0.2. For surfaces with 4/4 = 0.1, the FEM analysis
shows a maximum stress concentration of 2,07 (compared to the perturbation result 2.25).
At a wave peak, the perturbation solution 1 —4n(A4/4) becomes negative when A4/4 > 0.08,
while the FEM analysis indicates that the stress quickly approaches zero for 4/4 > 0.1.

SUMMARY AND CONCLUSIONS
The main results of the present work are:

(a) Analytic continuation has been used to derive universal relations given in eqns (17)
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and (25) between the elastic solutions for a circular inclusion and those for a homo-
geneous infinite plane under the same loading conditions. These relations are universal
in the sense that they are independent of the loading conditions. The solution to a
circular inclusion problem can thus be immediately obtained from that for a homo-
geneous infinite plane.

(b) Based on Muskhelishvilli’s complex variable representations. general perturbation for-
mulae [equations (38). (47), (48)] valid for arbitrary loading conditions are established
for an inclusion whose shape deviates slightly. otherwise arbitrarily. from that of a
reference circular inclusion. The complex potential functions for the actual inclusion are
determined from the distribution of the deviatoric stress components for the reference
circular inclusion. Based on the general formulae, explicit solutions are given for
inclusions with smooth polygon shapes (Fig. 3) under remote loads by considering a
cosine wavy perturbation along a reference circle.

(c) A similar perturbation analysis has been carried out for an interface whose shape
deviates slightly, otherwise arbitrarily, from a straight line. The general formulae which
are given in eqn (60) have also been specialized to consider a cosine wavy interface
profile, with results indicating that the perturbation effects decay exponentially at a
distance away from the interface.

(d) To demonstrate the kind of applications to which our perturbation analysis can be
applicd, we study in suflicient detail a traction-free surface under a laterally-applied
bulk stress and show that, under sufticiently-large stresses, material surfaces become
unstable against a range of morphological perturbations bounded by two critical
wavelengths given by (75). Also. it is suggested from the perturbation analysis and
verified by a finite clement caleulation (Fig. 6) that even slight surface undulations may
result in significant stress  concentrations, which in highly-stressed solids may cause
surface fracture or plastic deformation belore the bulk stress reaches a critical level.

(¢) Integral formulae which involve principal value integrattons in the Cauchy sense are
developed in the Appendix for caleulating the stress distribution along a perturbed
inclusion boundary.

The methodology developed here may also be applied to an elastic medium coupled
to other external fields such as piczoelectric materials and thermoclastic and poroclastic
solids. It is of high technological value to understand the effect of the surface and interfuce
morphology of these materials, and hopefully by that understanding one may find ways of
controlling the interface diffusion mechanism by meuns of prescribed thermomechanical
processes.
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APPENDIX: INTEGRAL FORMULAE FOR STRESS DISTRIBUTION ALONG A PERTURBED
INCLUSION BOUNDARY

Based on the general perturbation formulae given in (47), (48) for a nearly-circular inclusion and those given
in (60) for a slightly-undulating interfuce, one may derive explicit integral formulae for calculating the stress
distribution along the inclusion boundary where the perturbation effect is most significant.

To avoid any problems of singular perturbations in directly caleuluting the stress distribution along the
inclusion bondary I" at a chosen polar position 2, we shall choose the reference circle to be located at {z| = a(z)
so that A(0 = x) = 0 at the chosen 2 where the ficld quantitics will be calculated (Fig. Al). The importance of
such a treatment will become self-cvident shortly. For a given inclusion shape r = a(0), the perturbation A(0) is
thus tuken to be

y
A
reference circle °bservaj1°n point
aA(@) )
(g 'o”'b@
) g
a

- X

/A

perturbed inclusion

Fig. Al. Relocation of the reference circle at an observation point .
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a(fl) —a(x) u'(2)
A0 = 8 g =Y
(th e 4'(x) oD (Al)

For conciseness, we shall let a stand for u(x) in the following calculations.
Using (47). consider the derivative term

ALY
o()‘—n— ()* - d;+ 04, (A2)
i Jioas €

As - approaches a boundary point ¢ = g e”, the integral in (A2) is convergent in the principal value sense because
the perturbation assumed in (A1) has satisfied 4(] = t) = 0. The boundary value of the contour integral in (A2)
can be calculated using the Plemelj formula:

I (5
(rf’f—(’ldi> =tl+ —PVj ’-“—)ds (A3)
ht -3 it

where L is an arbitrary smooth curve or closed contour in the : plane and ¢ lies along L. Plus (+) and minus (—)
signs denote the left and right sides of L according to the direction of traversal. For the reference circle traversing
in the anticlockwise direction, {+) denotes the inclusion side while (—) denotes the matrix side. The value of
A/ —2) as ¢ and : approach ¢ is equal to 4°(1) = A’(2)it, where A'(2) is defined in (A1) for a given inclusion
shape. It can then be shown that, as = approaches ¢ from inside the inclusion,

] 0 DEEST)
<' § l‘lig.d,) = =l @E e - ’J 1wk (Ad)

2ri Joaw (§=2)° b dsin’[(0-02]

where the definition of the polar stress component £ is given in (1) of the text. Substituting (A3) into (A2) gives
the value of ®7(¢*) along I'. Repeating the same procedure one may caleulate other relevant integrals that appear

in calculating (D W), Whle ) and W (7). The stresses o and £ for the actual inclusion are written as
a(2) = a”(x) +oa(x), £(x) = (D +858(x) (AS)
where
da(x) = 4 Re[D'(n). 6&(x) = 2™ (10" (1) + P (). (A6)

After some algebraic manipulation, the final solutions are found to be

& ! 0er v 4
60,(1) = - Re {2i.4'(1)£‘,’(1)+ ,,"; PVJ‘ A(U)( l;—-%:-m - *I—;l(() )> d()}

- | M 20 Ne -
doy(x) =1 Re{—ZiA’(z)22(1)+ 5 I’VJ. 1(0)575—([%'——;)—ﬁd0}

68,(x) = id @[Ei@) - (1 + ML -0 ()]

'] 0 (-1 —--n 0 -2 -
Jl Aw)[t,(a)e =1 (1+n)2 e —af%b)e )—292?]d0

|
+— PV 2sin® [(0—2)/2]

2n
62,(2) = iAW) - (1 + QL) - NE4(x)]

I » =230 e (1 +Q)£‘.’(0)e-"”-"+n§2(0)c"“-" 20:(£2(0) + Q£30)]
+'PVJ. "(0’[ TSt [(0-2)7] I a0

(A7)

where A(0) and 4’(z) are given in (Al) for arbitrary inclusion shape a(f). Once the deviatoric stress components
(£9, £9) are known along the boundary of the reference circular inclusion, one may immediately calculate the
stress distribution along the actual inclusion boundary by (A7).

Nearly-circular holex
In the special case of a nearly-circular hole, we have A =11 = —1, £9=0and 2 = g, where gl is the
hoop stress distribution along the reference circular hole boundary. The genceral formulae (A7) reduce to

| " l(())m,,,(())cos(()—z)
- — g w 4]
o0 2 i J:. sin‘ [(0=2); 02 d
. | AN aa (D) cos (0~ )
£, = did (o) = - Py | T T 4 A8
oL, 1A (2} (x) o Pi J; sin [(0=2)77] (A8)

which may be alternatively written as
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de. (A9)

-:

o 1 * g0 () cos (9 —2) a(f) —a(x)
0.(x) =0. o.(x) = A(WVow(). Tw =04~ ST [(0—2 7] an

This solution matches a corresponding perturbation formula derived by Guao (1991b) in an earlier study on the
stress concentration due to smooth polygon holes in an elastic sheet. In that work, Gao has used the perturbation
formula (A9) to calculate the stress concentration at an elliptical hole subject to remote stresses and found good
agreement between the perturbation result and the exact solution. In that case it was found that the error of (A9)
is less than 5% for an aspect ratio of the ellipse as large as 1.5. The same range of accuracy is expected for the
general perturbation formulae (A7) in the general case of bimaterial inclusion problems.

Nearly-circular disks
Equation (A7) can also be specialized to a nearly-circular disk by setting A=Q= —1, £} =0 and
¢ = ga. where g, is interpreted as the hoop stress distribution along the boundary of the reference circular disk.
It may be verified that the general formulae (A7) reduce to

3 | S cos (9 —x)
00,(1)=2'RP1 J.“ A(aly (0)(—[(9——1‘)'7,‘] 2)(2[0

)
Aw)a:.’,.(a)(—,—c.ﬂs—“——f)— + 2) 4o (A10)

!
& =24 — PV
oL(x) 14’ (x) + 5 P ,[' e YT

which may be alternatively written as

do.  (ALD

. 1 N cos (1 —2) a(() —a(x)
0.(2) =0, 0.,(x) = A'@oin(x). 0w =au+ 5 Pl J; "’[""(”)<sin: (=72 ’) a0
Slightly-undulating interfuces
Similar integral formulac may be written for a slightly-undulating bimaterial interface based on the general
solution (60) and the Plemelj formula. Alternatively. one may consider a straight interfuce as a circular inclusion
with infinite radius and an undulating interface as a special “nearly circular™ inclusion. Along the undulating
interface y = A(x), the following integral formuliae may be derived :
) £holt(n -4
Sa,(x) = —QRe {2ixl'(\)'"(\)+ Py J. (‘)[“( )) (‘)l dt
. -x

- . 0 -
Say(x) =M Rc{-ZiA’(.v)S'}(.\')+ . l’VJ E0A0 - A u}

(l--\)
£ -(l +un-)t7“ﬂ§"(2[’“ ) - A0 dr

—Z3+ (L +DENN+TIEY()
(t—x)*

SE (x) = id (O)[EV(x) = (1 +ﬂ)£"(r)—ﬂ£"(\)l+ 13% J

SEx) = iA ()N - (1 +QENx) - NEYx)] + :{ PVJL [A(1) = A(x)]dr.

(A12)

In the special case of an undulating surface, the perturbation formula can be simplitied by setting
A== -1, Ex) =0and L)(x) = —a’.(x), which leads to

o300 = - 2PV J "(I)Eﬁ’l -,
" J * LA = A

= %406 (v) —
8Z.(x) = 2id'(x)ol (x) L

de. (A1)

This is consistent with the solutions derived in Gao (19914).



